矩阵乘法(矩阵乘法计算器)

Exce表格网 2023-01-29 03:50 编辑:admin 100阅读

1. 矩阵乘法

矩阵是一组排列成矩形的或者排列成行成列的数字或符号。要计算矩阵的乘法,你需要用第一个矩阵行上的元素(或数字)乘以第二个矩阵中列上的元素,再计算它们的和。矩阵乘法的步骤很简单,需要用到加法运算和乘法运算,并且还要正确的摆出最终结果。

矩阵相乘最重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。

1、前一矩阵的第一行对应元乘以后一矩阵第一列对应元之和为新矩阵的第一行第一列的元素。

例如:1*0+1*1=1

2、前一矩阵的第一行对应元乘以后一矩阵第二列对应元之和为新矩阵的第一行第二列的元素。

例如:1*2+1*1=3

3、前一矩阵的第一行对应元乘以后一矩阵第三列对应元之和为新矩阵的第一行第三列的元素。

例如:1*3+1*2=5

4、前一矩阵的第二行对应元乘以后一矩阵第一列对应元之和为新矩阵的第二行第一列的元素。

例如:2*0+0*1=0

5、前一矩阵的第二行对应元乘以后一矩阵第二列对应元之和为新矩阵的第二行第二列的元素。

例如:2*2+0*1=4

6、前一矩阵的第二行对应元乘以后一矩阵第三列对应元之和为新矩阵的第二行第三列的元素。

例如:2*3+0*2=6

注意事项:

1、分清楚矩阵就是指数表与行列式不同,矩阵相乘就是两个数表的运算。

2、自己多总结规律,就知道矩阵相乘是如何运算的了。

2. 矩阵乘法计算器

用科学计算器能进行矩阵的基本运算例如:用科学计算器算3乘3的矩阵:mode 中选6 matrix先定义要的一个矩阵(最多是3*3)按Ac结束shift+4,选1定义另一个矩阵。若要该数据则选2.除了要按shift+4+3/4/5选择矩阵,与普通乘法一样输入即可。

3. 矩阵乘法的几何意义

矩阵相乘,其几何意义就是两个线性变换的复合,比如A矩阵表示旋转变换,B矩阵表示伸长变换,AB就是伸长加旋转的总变换:同时伸长和旋转。

其现实意义的例子,汽车生产线上的机械手有几个关节,每个关节的转动都可看作一个空间转动矩阵,最后机械手末端的位置就是所有关节矩阵连乘(联动)的结果。

矩阵是线性变换的表示,矩阵乘以一个向量等于对这个向量施加此矩阵代表的线性变换。这种线性变换通过变换基来实现,矩阵中的各列就是变换后的新基。两个矩阵相乘,AB,就是把B中各列代表的“新基”又经过了A代表的线性变换得到了一组“新新基”。实际就是B线性变换和A线性变换的复合。

4. 矩阵乘法有结合律吗

乘法结合律: (AB)C=A(BC)

乘法左分配律:(A+B)C=AC+BC

乘法右分配律:C(A+B)=CA+CB

对数乘的结合性k(AB)=(kA)B=A(kB)

矩阵乘法在以下两种情况下满足交换律。

AA*=A*A,A和伴随矩阵相乘满足交换律。

AE=EA,A和单位矩阵或数量矩阵满足交换律。

还有其他一些特殊的“乘积”形式被定义在矩阵上,值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。

5. 矩阵乘法满足结合律,交换律吗

矩阵乘法不具有交换律,但是有结合律。

1、比如A是m×n阶的,B是n×m阶的,A×B肯定不等于B×A了如果两个都是方阵也不一定相等因为A×B是A左乘B,B乘A是A右乘B。

2、矩阵乘法一般不满足交换律乘法结合律:三个数相乘,先把前面两个数相乘,先乘第三个数,或者先把后面两个数相乘,再和第一个数相乘,它们的积不变。

3、矩阵I是单位矩阵。用I或E表示。在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种矩阵被称为单位矩阵。

它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1。除此以外全都为0。根据单位矩阵的特点,任何矩阵与单位矩阵相乘都等于本身,而且单位矩阵因此独特性在高等数学中也有广泛应用。

6. 矩阵乘法公式

矩阵的运算 1、矩阵的加法 : 如果 是两个同型矩阵(即它们具有相同的行数和列数,比如说 ),则定义它们的和 仍为与它们同型的矩阵(即 ), 的元素为 和 对应元素的和,即: 。

给定矩阵 ,我们定义其负矩阵 为: 。这样我们可以定义同型矩阵 的减法为: 。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列 运算律: ( 1)交换律: ; ( 2)结合律: ; ( 3)存在零元: ; ( 4)存在负元: 。2 、数与矩阵的乘法 : 设 为一个数, ,则定义 与 的乘积 仍为 中的一个矩阵, 中的元素就是用数 乘 中对应的元素的道德,即 。由定义可知: 。容易验证数与矩阵的乘法满足下列运算律: (1 ) ; (2 ) ; (3 ) ; (4 ) 。3 、矩阵的乘法:设 为 距阵, 为 距阵,则矩阵 可以左乘矩阵 (注意:距阵 德列数等与矩阵 的行数),所得的积为一个 距阵 ,即 ,其中 ,并且 。据真的乘法满足下列 运算律(假定下面的运算均有意义): ( 1)结合律: ; ( 2)左分配律: ; ( 3)右分配律: ; ( 4)数与矩阵乘法的结合律: ; ( 5)单位元的存在性: 。若 为 阶方阵,则对任意正整数 ,我们定义: ,并规定: 由于矩阵乘法满足结合律,我们有: , 。

7. 矩阵乘法交换律成立条件

什么情况下用交换律?

在交换位置后,可以使计算简便,使使用交换律

运算的定律都是用来使计算简便或者是改变运算顺序的,否则,利用运算定律也是无用的,尤其是在多个数相加或者是相乘的情况下,当你使用交换律的时候,可以使计算变得简单,也就是变成口算式的算式,这个时候使用交换律是最有用的,有效的

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片