1. excel进行相关性分析
1、打开原始数据表格,制作本实例的原始数据需要满足两组或两组以上的数据,结果将给出其中任意两项的相关系数2、选择“工具”-“数据分析”-“描述统计”后,出现属性设置框,依次选择 输入区域:选择数据区域,注意需要满足至少两组数据。如果有数据标志,注意同时勾选下方“标志位于第一行”; 分组方式:指示输入区域中的数据是按行还是按列考虑,请根据原数据格式选择; 输出区域可以选择本表、新工作表组或是新工作簿;3、点击“确定”即可看到生成的报表。
扩展资料:
相关性分析:对变量之间相关关系的分析,即相关性分析。其中比较常用的是线性相关分析,用来衡量它的指标是线性相关系数,又叫皮尔逊相关系数,通常用r表示,取值范围是[-1,1],
2. excel怎么进行相关性分析
在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。很多专业读者遇见此类问题时往往寻求专业软件,比如在化工中经常用到的Origin和数学中常见的MATLAB等等。它们虽很专业,但其实使用Excel就完全够用了。我们已经知道在Excel自带的数据库中已有线性拟合工具,但是它还稍显单薄,今天我们来尝试使用较为专业的拟合工具来对此类数据进行处理。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘支持下加载“分析数据库”。加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项
实例 某溶液浓度正比对应于色谱仪器中的峰面积,现欲建立不同浓度下对应峰面积的标准曲线以供测试未知样品的实际浓度。已知8组对应数据,建立标准曲线,并且对此曲线进行评价,给出残差等分析数据。
这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。
选择成对的数据列,将它们使用“X、Y散点图”制成散点图。
在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。
由图中可知,拟合的直线是y=15620x+6606.1,R2的值为0.9994。
因为R2 >0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。
3. excel如何进行相关性分析
如果是在Excel中的话,直接用CORREL或Pearson函数判断,参数中选择两个数据列,得到的结果应该是-1-1之间,小于0负相关,大于0正相关,越接近正负1相关性越强。
4. Excel做相关性分析
在对数据进行分析时,常常需要计算一些统计分析的数据,比如:描述统计,相关性系数,方差分析,t-检验等,如何使用excel就能快速进行这些数据的计算呢?下面就教给大家,非常的简单又实用。
1.首先,要先添加数据分析这一加载项,具体操作以2010版本为例,其他版本步骤类似,可能加载项的位置不同。选项---加载项
2.点击加载项后,在管理那里,选择转到
3.在出现的加载宏的框中将分析工具库两项打钩,然后选择确定。
4.拿一组数据,分别进行描述统计和相关性系数的计算举例。这组数据是每一天对于的注册某款游戏的人数,和该天在广告上投放的金额。
5.首先,运用描述统计来分析注册人数。选择数据----数据分析----描述统计----确定。在跳出来的窗口中显示的是可以进行统计分析的项目。
6.在跳出的描述统计窗口,将待统计的数据放入红色框区域,如果数据是按列排布,在分组方式就选择逐列,如果按行排列就选择逐行。
7.在输出选项部分,可以选择输出的位置。
8.在下面红色框框住的部分可以选择需要显示的指标。
9.在这里我选择了注册人数作为待分析数据,选择在数据右边显示结果,显示的指标选择了汇总数据,置信度选择了在95%。
5. excel的相关性分析
化学合成实验中经常需要考察压力随温度的变化情况。某次实验在两个不同的反应器中进行同一条件下实验得到两组温度与压力相关数据,试分析它们与温度的关联关系,并对在不同反应器内进行同一条件下反应的可靠性给出依据。
相关系数是描述两个测量值变量之间的离散程度的指标。用于判断两个测量值变量的变化是否相关,即,一个变量的较大值是否与另一个变量的较大值相关联(正相关);或者一个变量的较小值是否与另一个变量的较大值相关联(负相关);还是两个变量中的值互不关联(相关系数近似于零)。设(X,Y)为二元随机变量,那么:为随机变量X与Y的相关系数。p是度量随机变量X与Y之间线性相关密切程度的数字特征。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项。
1.打开原始数据表格,制作本实例的原始数据需要满足两组或两组以上的数据,结果将给出其中任意两项的相关系数。
2.选择“工具”-“数据分析”-“描述统计”后,出现属性设置框,依次选择: 输入区域:选择数据区域,注意需要满足至少两组数据。
如果有数据标志,注意同时勾选下方“标志位于第一行”,分组方式:指示输入区域中的数据是按行还是按列考虑,请根据原数据格式选择:输出区域可以选择本表、新工作表组或是新工作簿。
3.点击“确定”即可看到生成的报表。可以看到,在相应区域生成了一个3×3的矩阵,数据项目的交叉处就是其相关系数。显然,数据与本身是完全相关的,相关系数在对角线上显示为1;两组数据间在矩阵上有两个位置,它们是相同的,故右上侧重复部分不显示数据。左下侧相应位置分别是温度与压力A、B和两组压力数据间的相关系数。
从数据统计结论可以看出,温度与压力A、B的相关性分别达到了0.95和0.94,这说明它们呈现良好的正相关性,而两组压力数据间的相关性达到了0.998,这说明在不同反应器内的相同条件下反应一致性很好,可以忽略因为更换反应器造成的系统误差。
协方差的统计与相关系数的活的方法相似,统计结果同样返回一个输出表和一个矩阵,分别表示每对测量值变量之间的相关系数和协方差。不同之处在于相关系数的取值在 -1 和 +1 之间,而协方差没有限定的取值范围。相关系数和协方差都是描述两个变量离散程度的指标。
- 相关评论
- 我要评论
-