panda读取excel(panda读取csv)

Exce表格网 2023-02-05 08:40 编辑:admin 197阅读

1. panda读取csv

用 pandas.read_table()读txt吧,速度提升很明显

2. panda读取数据

pandas 读excel,日期变成了数字,pandas方法解决

excel中的数据是:

pandas读取出来是:

import pandas as pd data = pd.read_excel('文件路径') data['发货日期'] = data['发货日期'].fillna(method='ffill') # 因为有合并单元格, data 12341234

3. panda读取csv文件

当用pandas处理GB级以上的大文件时,会出现两个问题,一个是读取数据很慢,动辄要好几分钟,另外就是出现内存不足导致程序运行失败

4. panda读取某一列

Python批量读取特定文件夹下Excel的话,主要分为2步,首先根据后缀名(xls或xlsx)匹配出所有Excel文件,然后直接利用相关模块(pandas,openpyxl等)读取即可,下面我简单介绍一下实现过程,感兴趣的朋友可以尝试一下:

01

查找所有Excel文件

这一步非常简单,主要是根据后缀名匹配所有Excel文件,基本思路先使用os.walk函数遍历指定的文件夹,找到所有文件,然后一一匹配文件后缀名,如果是xls或xlsx,则为Excel文件,添加到list列表,之后返回,后面读取函数就是根据这个列表(存储所有搜索到的Excel文件路径)读取Excel文件:

02

读取Excel文件内容

这一步主要你是根据上一步找到的Excel文件路径直接读取Excel文件,至于读取模块或库的话,那就非常多啦,基本的xlrd,xlutils,openpyxl都行,最简单的方式就是使用pandas,一个著名的数据处理库,内置了大量函数和类型,可以轻松处理Excel等日常各种文件,安装的话,直接在cmd窗口输入命令“pip install pandas”即可:

安装完成后,我们就可以直接使用pandas库读取Excel文件了,非常简单,只需要一行代码即可搞定,也就是read_excel函数,传入Excel文件路径就行,默认情况下会读取列标题,如果你不需要列标题的话,设置header=None即可,读取的数据类型为DataFrame,后续处理的话,也非常方便:

至此,我们就完成了利用Python批量读取特定文件夹下Excel。总的来说,整个过程非常简单,就是根据后缀名匹配查找,然后直接读取即可,只要你有一定Python基础,熟悉一下上面的代码和示例,很快就能掌握的,网上也有相关教程和资料,介绍的非常详细,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。

5. panda读取excel文件保存

运用pandas将pycharm中的数据保存到Excel表格的方法:python提供了文件导出库包,如果是类文件,需要利用pandas包通过。文件.to_excel()的形式来导出,括号里边要注明导出后的文件名,以及导出的路径,也就是说导出到哪里,如果是要导出代码的话,我们新建文档,然后把代码粘贴到文档,然后修改文档后缀为py。

6. panda读取某字母开头数据

因为panda是可数名词,可数名词如果前面没有出现冠词,是需要加s的哦

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片