knn算法excel使用(knn算法简单例子)

Exce表格网 2023-02-28 03:25 编辑:admin 154阅读

1. knn算法简单例子

给样本数据集T={2,4,10,12,3,20,22,21,11,24} t={18},K=4 1. N={2,4,10,12},d1=16,d2=14,d3=8,d4=6 2.d={3},比较,N={4,10,12,3},d1=14,d2=8,d3=6,d4=15 3.d={20},比较,N={4,10,12,20},d1=14,d2=8,d3=6,d4=2 4.d={22},比较,N={10,12,20,22},d1=8,...

2. knn算法原理图

KNN,即K近邻算法,K近邻就是K个最近的邻居,当需要预测一个未知样本的时候,就由与该样本最接近的K个邻居来决定。KNN既可以用于分类问题,也可以用于回归问题。当进行分类预测时,使用K个邻居中,类别数量最多(或加权或加权最多)者,作为预测结果;当进行回归预测时,使用K个邻居的均值(或加权均值),作为预测结果。

使用KNN算法实现分类

建模预测:以鸢尾花数据为例,通过KNN算法实现分类任务。为了方便可视化,只取其中的两个特征.

3. knn算法分析

KNN(K-Nearest Neighbor)是最简单的机器学习算法之一,可以用于分类和回归,是一种监督学习算法。它的思路是这样,如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

也就是说,该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

4. knn算法百度百科

算法原理

KNN算法的核心思维:相似度较高的样本,映射到n维空间后,其距离回避相似度较低的样本在距离上更加接近。

KNN,即K近邻算法,K近邻就是K个最近的邻居,当需要预测一个未知样本的时候,就由与该样本最接近的K个邻居来决定。KNN既可以用于分类问题,也可以用于回归问题。当进行分类预测时,使用K个邻居中,类别数量最多(或加权最多)者,作为预测结果;当进行回归预测时,使用K个邻居的均值(或加权均值),作为预测结果。

5. knn算法简单例题

两种算法的区别是,K-means本质上是无监督学习,而KNN是监督学习;K-means是聚类算法,KNN是分类(或回归)算法。

K-means算法把一个数据集分割成簇,使得形成的簇是同构的,每个簇里的点相互靠近。该算法试图维持这些簇之间有足够的可分离性。由于无监督的性质,这些簇没有任何标签。KNN算法尝试基于其k(可以是任何数目)个周围邻居来对未标记的观察进行分类。它也被称为懒惰学习法,因为它涉及最小的模型训练。因此,它不用训练数据对未看见的数据集进行泛化。

6. knn算法应用实例

K最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片