1. 相关系数对两种证券组合的收益与风险的关系
标准差也就是风险。他不仅取决于证券组合内各证券的风险,还取决于各个证券之间的关系。 投资组合的标准差计算公式为 σP=W1σ1+W2σ2 各种股票之间不可能完全正相关,也不可能完全负相关,所以不同股票的投资组合可以减低风险,但又不能完全消除风险。
一般而言,股票的种类越多,风险越小。 关于三种证券组合标准差的简易算法: 根据代数公式:(a+b+c)的平方=(a的平方+b的平方+c的平方+2ab+2ac+2bc) 第一步 1,将A证券的权重×标准差,设为A, 2,将B证券的权重×标准差,设为B, 3,将C证券的权重×标准差,设为C, 第二步 将A、B证券相关系数设为X 将A、C证券相关系数设为Y 将B、C证券相关系数设为Z 展开上述代数公式,将x、y、z代入,即可得三种证券的组合标准差=(A的平方+B的平方 +C的平方+2XAB+2YAC+2ZBC)的1/2次方。
2. 相关系数为零,表明两种证券收益率变动没有关系
1、计算公式为相关系数=协方差/两个项目标准差之积。
相关系数:度量两个随机变量间关联程度的量。相关系数的取值范围为(-1,+1)。当相关系数小于0时,称为负相关;大于0时,称为正相关;等于0时,称为零相关。
2、协方差:如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
3、标准差(Standard Deviation) ,也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
3. 相关系数的大小体现两个证券收益率之间相关性的强弱
β系数是一种风险指数,用来衡量个别股票或股票基金相对于整个股市的价格波动情况。β系数是一种评估证券系统性风险的工具,用以度量一种证券或一个投资证券组合相对总体市场的波动性,在股票、基金等投资术语中常见。
β系数反映了金融产品对市场(或大盘)变化的敏感性,也就是个股与大盘的相关性或通俗说的“股性”。可根据市场走势预测选择不同的贝塔系数的证券从而获得额 外收益,特别适合作波段操作使用。当有很大把握预测到一个大牛市或大盘某个不涨阶段的到来时,应该选择那些高贝塔系数的证券,它将成倍地放大市场收益率,为你带来高额的收益;相反在一个熊市到来或大盘某个下跌阶段到来时,你应该调整投资结构以抵御市场风险,避免损失,办法是选择那些低贝塔系数的证券。
4. 证券的相关系数越高,资产组合的方差减小得越多
单项投资根据预期值调方差/标准差,比较变异系数(标准差/预期值)调风险大小。
2.≥2种证券投资组合调投资比重(相关系数),使最小方差组合最小。
3.投组资本市场,调整借贷量占风险组合资本的比重。使单位整体风险市场价在有效边界上,标准差与期望报酬均衡。
4. 证券市场调系统风险β系数,使市场平均风险溢价与必要报酬在相应可接受范围内。
5.债券不管发行费下信用风险补偿率调节目标税前债务资本。
5. 相关系数对组合收益风险的影响
一股票与市场组合的相关系数为0.8,该股票收益率的标准差为20%;市场组合的收益率标准差为15%,
- 相关评论
- 我要评论
-