excel微分方程(函数微分方程)

Excel表格网 2022-10-14 07:40 编辑:殷烟 116阅读

1. 函数微分方程

微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。

微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。

数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。

2. 函数微分方程的解

微分方程的通解公式:y=y1+y* = 1/2 + ae^(-x) +be^(-2x),其中:a、b由初始条件确定,例:y''+3y'+2y = 1 ,其对应的齐次方程的特征方程为s^2+3s+2=0 ,因式分 (s+1)(s+2)=0,两个根为: s1=-1 s2=-2。

微分方程(英语:Differential equation,DE)是一种数学方程,用来描述某一类函数与其导数之间的关系。微分方程的解是一个符合方程的函数。而在初等数学的代数方程里,其解是常数值。

3. 函数微分方程求解公式

y=e的3x次幂乘以cosx的微分就是求积的导数乘以dx,先对e的3x次幂求导得3倍的e的3x次幂×cosx,再用e的3x次幂×cosx的导数负sinx,两者加和再乘以dx就是微分。最后结果是:dy=(3e3xcosx-e3xsinx)dx

4. 函数微分方程怎么解

二阶常系数齐次线性方程的形式为:y''+py'+qy=0其中p,q为常数,其特征方程为 λ^2+pλ+q=0依据判别式的符号,其通解有三种形式:

1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];

2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];

3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx)。

最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。

扩展资料:

偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中。

常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。

5. 函数微分方程通解

对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。

对一个微分方程而言,它的解会包括一些常数,对于n阶微分方程,它的含有n个独立常数的解称为该方程的通解。

举例说,y'=2x的通解为y=x^2+C,表示一族抛物线,如果给出初始条件y(0)=0,代入通解得到0=0+C--->C=0于是通解化作特解:y=x^2,表示一条抛物线。所以,微分方程的通解表示解曲线族,特解则表示该曲线族中的一条。

6. 函数方程和微分方程

1、常微分方程是含有自变量(一个)、未知函数和它的导数的等式,偏微分方程是含有自变量(两个或两个以上)、多元函数及其导数(偏导数)的等式;

2、常微分方程的解是一元函数;偏微分方程的解是多元函数。

7. 函数的微分方程

微分方程,是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。

微分方程的解有三种形式:

(1)显式解——y=f(x)或x=g(y);

(2)隐式解——由方程Φ(x,y)=0确定的函数关系;

(3)参数方程解——由参数方程x=x(t),y=y(t)确定的函数关系.

只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。

8. 多元函数微分方程

两者不存在区别之分,因为两者是包含与被包含的关系。微分方程包括常微分方程。 微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。 未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。 含有未知函数的导数,如 的方程是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。 微分方程是伴随着微积分学一起发展起来的。

9. 函数微分方程解法

微分方程的通解是一个函数表达式y=f(x),其中一阶线性常微分方程通解方法为常数变易法;二阶常系数齐次常微分方程通解方法为求出其特征方程的解。偏微分方程常见的问题以边界值问题为主,边界条件则是指定一特定超曲面的值或导数...

10. 函数微分方程公式

微积分基本公式是牛顿-莱布尼茨公式。

1、通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。

2、积分分为2种,其中一种定积分就是求累积起来的量,比如求长度、面积、体积等。为什么说累积,因为无穷多点构成线长度,无穷多线构成面面积,无穷多面构成体体积。二元微分学用平面逼近某曲面,的曲面某点的切平面。

3、积分在初等数学的范围内是无法求解的,但可以通过转化为二重积分求其广义积分。f是一个关于x和y的函数,称为向量场的势函数。这样叫的原因来自于物理学,在物理学里面,把电势或者重力势称为势能。

11. 函数微分方程的特征

第一个错误,

第二个正确。

含有未知函数的导数或微分的方程,

称为微分方程。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片