1. 大数据分析获取
根据顾客平时的下单情况,以及一些了解到的情况做一个分析。
2. 大数据分析与采集
共享单车大数据是通过各个车辆上的二维码及用户手机连码来进行采集的。采集到的数据通过服务器来运输,保存共享单车数据,储存下来做数据分析。
有了大数据技术的介入,对共享单车的投放和停放进行有序的调配,按照城市公共交通网络数据进行分析得出人员流动规律,从而进行单车的调配、投放、停放等地点的选取,进一步提高了单车的使用率,实现了资源利用的最大化。站在共享单车企业的角度来看,不但节约了管理成本,而且提升了用户的体验感,通过大数据进行分析,用最低的成本实现更高的管理回报。
基于互联网技术而生的大数据拥有海量的信息,只要让这些信息能够互联互通、实现共享,投放于市场的共享单车数量就可以轻松地被锁定,监管部门完全可以按图索骥地对投放于市场的共享单车,在数量方面精准监管。这种借助大数据的精准监管,除了可以让共享单车在市场上的数量始终保持在符合客观需求的动态平衡状态外,还可以从源头上最大限度地减少共享单车过度投放所带来的诸多城市治理难题,实现一举多赢的善治效果。
3. 大数据收集分析
大数据分析(Big Data Analysis)是当前信息技术的一个重要应用领域,对我们的工作和生活产生着巨大的影响。
相对于传统的数据概念,“大数据”的定义为四个“V”:数量大(volume)、多样化(variety)、变化快(velocity)和有价值(value)。具体,请参阅我之前的文章《三分钟读懂大数据》。本文着重介绍对于大数据的分析方法。
大数据分析的流程一般为:
数据采集→数据传输→数据预处理→数据统计与建模→数据分析/挖掘→数据可视化/反馈。
下面依次加以说明:
数据采集:
数据采集的功能包括:
通过物联网设备采集数据。(参见《三分钟读懂物联网》)
通过在应用程序中插入特定代码(“埋点”)来采集数据。
将采集的数据传输到指定的服务器。
不论是采集数据,还是传输数据,都要求最大限度地保证数据的准确性、完整性和及时性,这就要求数据采集能处理很多细节方面的问题,比如用户标识、网络策略、缓存策略、同步策略、安全保障等。
数据预处理:
主要包括数据清理和数据整理。
1. 数据清理
数据清理是指发现并处理数据中存在的质量问题,如缺失、异常等。例如,某用户在填写调查问卷时,没有填写“年龄”一栏的信息,那么对于该用户填写的这条数据来说,年龄就是缺失值;异常是指虽然有值但值明显偏离了正常取值范围,如针对18~30岁成年人的调查问卷中,某用户填写调查问卷时将年龄误填为2。
必须处理好包含缺失值或异常值的数据,否则会严重影响数据分析结果的可靠性。
2. 数据整理
数据整理是指将数据整理为数据建模所需要的形式。例如,在建立房屋价格预测模型时,通常需要将对房价预测无用的数据项(如房屋的ID编号)去除,将用于预测目标值的特征(如房龄、朝向等)和目标变量(房屋价格)分开。
数据统计与建模:
数据统计是指对数据计算均值、方差等统计值,通过统计分析掌握数据特性,完成对已知数据的解释。建模则是根据已有数据建立模型以对未来数据进行预测、分类,解决实际应用问题。
数据分析/挖掘:
数据挖掘是从大量数据中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。
数据可视化/反馈:
数据可视化是指将数据
4. 大数据的获取
通过输入手机号,验证码就可以获取
5. 大数据分析数据获取
“12345”热线将建立热线知识库、运行数据库和大数据分析平台等,加强大数据分析应用,通过工作简报、专报和特征数据展示等形式,及时反映重要社情民意,为政府科学决策、精准施政提供依据。
6. 利用大数据分析
小组功能是豆瓣对用户分析的利器。两个用户加同一个小组,说明他们之间的兴趣爱好会很接近。读书、音乐、电影等等也是类似。根据这些数据,豆瓣能准确猜测出用户的各种资料,例如地域、性别、年龄、学历、学校、喜好等等,只有当有了这些数据的时候,豆瓣电台才成为可能。
- 相关评论
- 我要评论
-