excel三维矩阵(三维矩阵图)

Excel表格网 2022-11-27 09:35 编辑:admin 212阅读

1. 三维矩阵图

答:

方阵是矩阵图形。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题,将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

2. 三维矩阵计算公式

3×3三阶矩阵乘法公式:D=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33- a11a23a32。该公式运用了对角线法则。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。

在物理学中,矩阵于电路学,力学,光学和量子物理中都有应用。计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。

在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

3. Excel 矩阵

Excel提供求逆矩阵的函数:MINVERSE,可以直接求一个方阵的逆。但要注意的是,求逆矩阵只能用数组公式,如已知的方阵在A1:C3——3×3的方阵,要在D1:F3中求其逆矩阵:

先选择D1:F3,即选择与已知方阵同样大小的空方阵区域,再输入公式:

=MINVERSE(A1:C3)

同时按Ctrl+Shift+Enter三键输入数组公式,得到结果。

4. 矩阵有几维

三阶矩阵可以设为(aij)3*3,总共有aij=aji三个等式,有9个未知数,3个等式,那么解空间的维度就是6。

5. 三维矩阵运算

定理1:

设A为一n×n三角形矩阵。则A的行列式等于A的对角元素的乘积。

根据定理1,只需证明结论对下三角形矩阵成立。利用余子式展开和对n的归纳法,容易证明这个结论。

定理2:

令A为n×n矩阵。

若A有一行或一列包含的元素全为零,则det(A)=0。

若A有两行或两列相等,则det(A)=0。

 扩展资料 

  这些结论容易利用余子式展开加以证明。

  矩阵行列式是指矩阵的全部元素构成的行列式,设A=(aij)是数域P上的一个n阶矩阵,则所有A=(aij)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的.任一个数,则|AB|=|A||B|,|kA|=k|A|,|A*|=|A|n-1,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A-1|=|A|-1。

  在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

  矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。

  对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

  数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。

6. excel怎么做二维矩阵图

1.进入电脑,打开Microsoft Office2010软件,把数据做成Excel表格,选中数据区域,点击插入,选择三维气泡图。

2.然后点击图表工具选项里的设计功能,在出来的下拉菜单里选择“选择数据”选项,接着双击图表,点击设置坐标轴格式,将纵坐标轴交叉里的坐标轴值设置为0.25,同时勾选下方的逆序刻度值。

3.插入矩形框,组合图片另存为待用,接着设置绘图区格式,选择图片或纹理填充,点击文件。

4.最后打开数据标签格式,勾选单元格中的(选择范围),点击选择数据区域(A,B....各个物流项目),点击确定即可。

7. 四维矩阵图

一。作为时间的第四维数

主条目:时空当人们说到“四维空间”时,经常指的都是关于时间的概念。在这种情况下,四维空间可以理解为三维空间附加一条时间轴。这种空间叫做闵可夫斯基时空或“(3 + 1)-空间”。这也是爱因斯坦在他的广义相对论和狭义相对论中提及的四维时空概念。

二。作为空间的第四维数

第四维数可以用空间的方式理解,即一个有四个空间性维数的空间(“纯空间性”的四维空间),或者说有四个两两正交的运动方向的空间。这种空间就是数学家们用来研究四维几何物体的空间,与爱因斯坦提出的时间作为第四维数的理论不同。关于这一点,考克斯特曾写道:

把时间作为第四维数带来的好处即使有的话也是微不足道的。实际上,H. G. 威尔在《时间机器》中发展的这种十分吸引人的观点导致了J. W. 杜恩(《时间实验》)等作者对相对论的非常错误的理解。闵可夫斯基的时空几何是不符合欧几里得体系的,所以也就与当前的研究没有关系。- H. S. M. 考克斯特,Regular Polytopes从数学方面讲,普通三维空间集合的四维等价物是欧几里得四维空间,一个四维欧几里得赋范向量空间。一个向量的“长度”

以标准基底表示也就是勾股定理向四维空间进行的很自然的类比,这就让两个向量之间的夹角很容易定义了。

8. 二维矩阵和三维矩阵

n阶矩阵A与其伴随矩阵A有很多联系和继承性。

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。

当矩阵是大于等于二阶时:

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。

主对角元素实际上是非主对角元素的特殊情况,(-1)x+y因为x=y,所以(-1)x+y=1,一直是正数,没必要考虑主对角元素的符号问题。当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。二阶矩阵的求法口诀是主对角线元素互换,副对角线元素变号。

9. 三维矩阵画图

矩阵图法就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法从问题事项中,找出成对的因素群,分别排列成行和列,找出其间行与列的相关性或相关程度的大小的一种方法

10. excel三维矩阵图表

公式:Excel可以计算正态分布的多种模型,下面以P(X≤2)为例。

1、建立好表格

2、点击插入函数

3、调整到统计栏

4、找到NORM。DIST。可直接搜索。

5、输入4个参数,下方有提示。

6、点击确定,即可输出。具体会用到excel的正态分布函数Normdist()输入数据。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片