excel如何求补集(怎样求补集)

Excel表格网 2022-12-01 03:35 编辑:admin 87阅读

1. 怎样求补集

Q的补集是R-Q,

也就是说Q的补集是无理数集。

2. 补集的补集

首先假设U为全集,集合A是集合U的真子集,那么集合A相对于集合U的补集我们记为集合B,则集合B=集合U-集合A

3. 集合中的补集怎么求

只有两个集合以上才能进行交集,并集和补集的求解,一个集合不会进行交集,并集和补集的运算。

交集:顾名思义,指的是两个集合之间都有的部分。

如:集合A={1,2,3,4},集合B={2,3,4}

则集合A和集合B的交集为:{2,3,4}

并集:两个集合的元素都算上,就是最后的并集。

注意并集还是集合,因此满足集合的三个性质,一定要将重复的元素进行删除。

如上题中的A集合和B集合的并集为:{1,2,3,4}

补集:大集合中除去小集合,剩下的那个集合就是这个小集合的补集。

如上面的例题中B集合在A集合中的补集为{1}

1、全集与补集

1 补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即

CSA=

2、全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U表示

4. 补集怎么运算

集合的基本运算:交集、并集、相对补集、绝对补集、子集。

(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。

(2)并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。

(3)相对补集:若A和B 是集合,则A 在B 中的相对补集是这样一个集合:其元素属于B但不属于A,B - A = { x| x∈B且x∉A}。

(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。

(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。符号语言:若∀a∈A,均有a∈B,则A⊆B。

5. 补集怎么看

全体实数的补集是什么,主要看全集是什么,如果全集是实数,那么全体实数的补集就是空集。

6. 补集怎么取

交集:取两个集合的公共部分并集:取两个集合所有的元素全集:任何一个集合都可以为全集,只要它含有你要研究的所有元素补集:在全集中相对于另一个集合而言的,和初中学习的补角类似的

7. 补集怎么说

集合集合具有某种特定性质的事物的总体。 这里的“事物”可以是人,物品,也可以是数学元素。例如:

1、分散的人或事物聚集到一起;使聚集:紧急~。

2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor, G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。 元素与集合的关系  元素与集合的关系有“属于”与“不属于”两种。集合与集合之间的关系  某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。   『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ? B。若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,一般写作 A ? B。 中学教材课本里将 ? 符号下加了一个 ≠ 符号(如右图), 不要混淆,考试时还是要以课本为准。   所有男人的集合是所有人的集合的真子集。』集合的几种运算法则  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}   交集: 以属于A且属于B的元 差集表示素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}   例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} 。那么因为A和B中都有1,5,所以A∩B={1,5} 。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。 图中的阴影部分就是A∩B。 有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减 集合1再相乘。48个。   对称差集:   设A,B 为集合,A与B的对称差集AÅB定义为:   AÅB=(A-B)∪(B-A)   例如:A={a,b,c},B={b,d},则AÅB={a,c,d}   对称差运算的另一种定义是:   AÅB=(A∪B)-(A∩B)   无限集: 定义:集合里含有无限个元素的集合叫做无限集   有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。   差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:A\B={x│x∈A,x不属于B}。   注:空集包含于任何集合,但不能说“空集属于任何集合”. 补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}   空集也被认为是有限集合。   例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。   在信息技术当中,常常把CuA写成~A。集合元素的性质  1.确定性:每一个对象都能确定是不是某一

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片