1. 多元统计与数据分析
在已知系统模型结构时,用系统的输入和输出数据计算系统模型参数的过程。18世纪末德国数学家C.F.高斯首先提出参数估计的方法,他用最小二乘法计算天体运行的轨道。20世纪60年代,随着电子计算机的普及,参数估计有了飞速的发展。参数估计有多种方法,有矩估计、极大似然法、一致最小方差无偏估计、最小风险估计、同变估计、最小二乘法、贝叶斯估计、极大验后法、最小风险法和极小化极大熵法等。最基本的方法是最小二乘法和极大似然法。统计检验的目的如下:
社会调查往往要涉及大量的变量,并包括众多的个案,而且这些变量之间的关系又往往是错综复杂的,这就使每项调查所要处理与分析的数字信息量十分庞大。处理并理解这么多信息资料是极其困难的,必须设法提炼压缩,找出其内在的特征。统计分析就是帮助人们提高控制数字的能力,透过这些庞杂的数字和复杂的关系去把握其内在的规律性的一种有力的工具。
(2)统计分析的作用主要有:
①可对资料进行简化和描述统计分析的作用之一就是以精简的数字来综合大量的事实,对研究变量自身特征作出清晰的描述,即描述性统计。
②可对变量间的关系进行描述和深入的分析变量间关系是社会研究的最重要的内容之一,统计分析为深入描述和分析变量间关系,进而达到理论解释提供了十分有力的手段。
③可通过样本资料推断总体。在社会研究中,大量的社会调查是抽样调查,如何由样本资料概推到总体,就成为抽样调查必须解决的一个问题,统计学很好的解决了这一问题。它可以通过参数估计和统计检验等手段,将样本资料推论到总体并能指出这种推论的误差及做出这种推论的把握有多大,即推断性统计。
(3)社会研究需要进行多变量分析的原因是:
社会现象之间的联系很少是单纯一对一的关系,一种现象的产生,往往需要用多种原因或多种因素进行解释,甚至是用一组相互有关的现象去解释另一组现象。有时这种解释还需要多层次。由于这种多元的相互联系更能反映社会现象联系的实际情况,因此多元统计分析成为深入研究社会现象、进行定量分析的必不可少的工具。
2. 多元统计与数据分析相关论文
统计上一般认为大于30个样本数就是大样本,这样就可以减少样本误差,所以老师说至少三十个样品。
3. 多元统计与数据分析医学
二者的区别:研究对象不同、课程不同、就业方向不同
一、研究对象不同
金融科技:研究金融学、投资学、互联网金融等。
统计学主要研究客观事物的总体数量特征和数量关系。
二、开设课程不同
金融科技课程:金融科技概论、自动化数据处理技术、互联网金融风险管理、第三方支付与电子银行、互联网金融运营管理、大数据金融计量分析综合实践等。
统计学课程:数理统计,抽样调查,随机过程,多元统计,程序设计语言,数据分析及统计软件、回归分析,经济预测与决策,证券投资的统计分析,系统分析与软件设计等。
三、就业方向不同
金融科技:金融机构、金融科技产品开发、数据分析,金融产品运营和管理。
统计学:政府部门、统计局、保险、证券公司等金融部门、市场调查公司、咨询公司、各公司的市场调研部门、互联网行业。
4. 多元统计与数据分析报告r语言
用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。
②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。
③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列
5. 多元统计与数据分析研究的基本内容
优点:
1、回归分析法在分析多因素模型时,更加简单和方便;
2、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果,但在图和表的形式中,数据之间关系的解释往往因人而异,不同分析者画出的拟合曲线很可能也是不一样的;
3、回归分析可以准确地计量各个因素之间的相关程度与回归拟合程度的高低,提高预测方程式的效果;在回归分析法时,由于实际一个变量仅受单个因素的影响的情况极少,要注意模式的适合范围,所以一元回归分析法适用确实存在一个对因变量影响作用明显高于其他因素的变量是使用。多元回归分析法比较适用于实际经济问题,受多因素综合影响时使用。 缺点: 有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。
6. 多元统计与数据分析的意义
线性回归
一种统计分析方法
线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。
回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
7. 多元统计与数据分析实例
主要课程:数学建模、多元统计与数据分析、数据挖掘与机器学习、数字图像处理、智慧城市技术概论等应用理论课程,以及数据结构与算法、面向对象程序设计、Python程序设计、数据库原理及应用、深度学习等工具类课程。
8. 多元统计与数据分析中的应用心得
分析数据有两种,
1列表法
将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。
2作图法
作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。
这个要看你分析什么数据。
分析大数据,R语言和Linux系统比较有帮助,运用到的方法原理可以翻翻大学的统计学,不需要完全理解,重在应用。
分析简单数据,Excel就可以了。Excel本意就是智能,功能很强,容易上手。我没有见过有人说自己精通Excel的,最多是熟悉Excel。Excel的函数可以帮助你处理大部分数据。
一、掌握基础、更新知识。
基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识),多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。
数据库查询—sql
数据分析师在计算机的层面的技能要求较低,主要是会sql,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些sql技巧、新的函数,对你工作效率的提高是很有帮助的。
统计知识与数据挖掘
你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:决策树、聚类、关联规则、神经网络等。但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?
行业知识
如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。
一名数据分析师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业,在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于a部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:
对于a部门,
1、新会员的统计口径是什么。第一次在使用a部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?
2、是如何统计出来的。a:时间;是通过创建时间,还是业务完成时间。b:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。
3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。
4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?
在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写sql代码从数据库取出数据)。后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?
对于新进入数据行业或者刚进入数据行业的朋友来说:
行业知识都重要,也许你看到很多的数据行业的同仁,在微博或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。因为作为数据分析师,在发表任何观点的时候,都不要忘记你居于的背景是什么?
但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名数据分析师不会写sql,那麻烦就大了。哈哈。。你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。
不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的统计学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。
二、要有三心。
1、细心。
2、耐心。
3、静心。
数据分析师其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。
三、形成自己结构化的思维。
数据分析师一定要严谨。而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。
四、业务、行业、商业知识。
当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。
这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。数据与具体行业知识的关系,比作池塘中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。而没有“鱼”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。
如何提高业务知识,特别是没有相关背景的同学。很简单,我总结了几点:
1、多向业务部门的同事请教,多沟通。多向他们请教,数据分析师与业务部门没有利益冲突,而更向是共生体,所以如果你态度好,相信业务部门的同事也很愿意把他们知道的告诉你。
2、永远不要忘记了google大神,定制一些行业的关键字,每天都先看看定制的邮件。
3、每天有空去浏览行业相关的网站。看看行业都发生了什么,主要竞争对手或者相关行业都发展什么大事,把这些大事与你公司的业务,数据结合起来。
4、有机会走向一线,多向一线的客户沟通,这才是最根本的。
标题写着告诫,其实谈不上,更多我自己的一些心得的总结。希望对新进的朋友有帮助,数据分析行业绝对是一个朝阳行业,特别是互联网的不断发展,一个不谈数据的公司根本不叫互联网公司,数据分析师已经成为一个互联网公司必备的职位了。
9. 多元统计与数据分析报告
Stata 是一套提供其使用者数据分析、数据管理以及绘制专业图表的完整及整合性统计软件。它提供许许多多功能,包含线性混合模型、均衡重复反复及多项式普罗比模式。
Stata 的矩阵运算功能 矩阵代数是多元统计分析的重要工具, Stata 提供了多元统计分析中所需的矩阵基本运算,如矩阵的加、积、逆、 Cholesky 分解、 Kronecker 内积等;还提供了一些高级运算,如特征根、特征向量、奇异值分解等;在执行完某些统计分析命令后,还提供了一些系统矩阵,如估计系数向量、估计系数的协方差矩阵等。
- 相关评论
- 我要评论
-